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By means of a matching approach we study analytically the appearance of static and oscillating-modulus
pulses in the one-dimensional quintic complex Ginzburg-Landau equation without nonlinear gradient terms.
When considering nonlinear gradient terms the method enables us to calculate the velocities of the stable and
unstable moving pulses. We focus on this equation since it represents a prototype envelope equation associated
with the onset of an oscillatory instability near a weakly inverted bifurcation. The results obtained using the
analytic approximation scheme are in good agreement with direct numerical simulations. The method is also
useful in studying other localized structures like holes.
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I. INTRODUCTION

In the last decade experimental evidence of localized
structures in dissipative systems far from equilibrium has
been reported. In a quasi-one-dimensional system, an annu-
lus filled with a mixture of ethanol and water and heated
from below, localized structures of convection surrounded by
nonconvecting fluid have been studied �1�. More recently, the
formation of clusters of localized structures via the self-
completion scenario in a quasi-two-dimensional gas dis-
charge system �2�, and the interaction of dissipative localized
structures in an optical pattern-forming system have been
observed �3�. Experiments on vertically vibrated granular
layers in evacuated containers reveal a variety of patterns
including particlelike localized excitations �oscillons� �4�. In
chemical systems, catalytic oxidation of CO on Pt�110� ex-
hibits oscillatory kinetics giving rise to solitary waves �5�,
and experiments on a ferrocyanide-iodate-sulfite reaction dif-
fusion system show spot patterns that undergo a continuous
process of growth through replication and death by over-
crowding �6�.

The wide range of qualitatively different localized struc-
tures cannot be understood with a single mechanism. Coex-
istence between two stable states �not necessarily homoge-
neous �7�� or excitability are common features of the
dynamics of nonequilibrium media that facilitates the forma-
tion of localized patterns.

Reaction-diffusion models have been successfully show-
ing a rich variety of behaviors, such as self-replication �8,9�,
elastic behavior upon collision �10,11�, or soliton behavior
�12�. Localized solutions have been observed in monostable
and bistable systems with two stable fixed points and one
unstable fixed point �13� or one stable fixed point, a stable
limit cycle, and an unstable limit cycle �12,14,15�.

Localized solutions, like pulses, and their interactions
have also been studied within the framework of envelope
equations and order parameters equations �16,17�. In the do-
main of the envelope equations, the quintic complex
Ginzburg-Landau equation �CGLE� is known to admit stable
localized solutions like pulses as a consequence of the coex-
istence between a stable limit cycle and a stable fixed point

and its nonvariational nature. The quintic CGLE represents
an important prototype equation, since it arises generically as
an envelope equation for a weakly inverted bifurcation asso-
ciated to traveling waves.

Since Thual and Fauve showed �18� that a quintic CGLE
with a destabilizing cubic term gives rise to stable localized
solutions, much effort has been performed in studying pulse
solutions in this equation from a numerical and analytic point
of view. Perturbative analysis of solitons in the nonlinear
Schroedinger equation limit �conservative limit� has been de-
veloped by some authors �19,20�. The opposite limit �varia-
tional limit� has been studied in �21,22�. Particular solutions
of the quintic CGLE have been found by van Saarloos and
Hohenberg reducing this equation to a three-variable dy-
namical system �23,24�. These authors pointed out the fact
�from a numerical observation� that stationary pulses exist in
a narrow range where there is coexistence between zero and
the homogeneous solution. Exact solitary wave solutions of
the one-dimensional quintic CGLE are obtained using a
method derived from the Painlevé test for integrability �25�.
These solutions are expressed in terms of hyperbolic func-
tions, and include the pulses found by van Saarloos and Ho-
henberg. In a series of articles Akhmediev et al. report nu-
merical observation of new forms of stable localized
solutions of the quintic CGLE including moving pulses. Be-
sides this, they find analytic solutions using a restrictive An-
satz �26–30�. In �31� Deissler and Brand find numerically
that there are—in addition to the stationary pulses reported
previously—stable localized solutions that are periodic, qua-
siperiodic, or even chaotic in time. The same authors, in a
later article, study the effect of nonlinear gradients terms on
breathing localized solutions in the quintic CGLE �32�. In a
recent analytical short paper, we have reported a method
which enables us to construct approximate analytic station-
ary pulses in the quintic CGLE in a particular case, namely,
without dispersive terms, and to show that the appearance of
stationary pulses is related to a saddle-node bifurcation �33�.
The method consists of calculating the pulse inside and out-
side the core and then to match the approximate solutions in
the border of the regions, imposing there continuity of the
amplitude, the phase, and the derivative of the amplitude.
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Our analytical study remains valid through the whole inter-
mediate range of parameters between the variational and the
conservative limits. This method has been useful in studying
localized oscillating solutions in simple reaction-diffusion
systems since at leading order this problem can be reduced to
a quintic CGLE without dispersive terms �34�.

The goal of this paper is to show in detail the above-
mentioned analytical method, not restricted to a particular
case, as it was shown in �33�, but in the full case, namely the
quintic CGLE including dispersive and nonlinear gradient
terms. The dispersive terms are responsible, as it has been
pointed out in �31�, for breathing and chaotic pulses. On the
other hand, the quintic CGLE with nonlinear gradient terms
is a more general model with application in propagation of
ultrashort pulses in optical fibers �35�. In addition, we show
how this method can be useful in studying other kinds of
localized structures, like holes, in the quintic CGLE.

II. THE QUINTIC CGLE WITHOUT NONLINEAR
GRADIENT TERMS: STATIC AND OSCILLATING-

MODULUS PULSES

The quintic CGLE without regard to nonlinear gradient
terms reads

�tA = �A + ��A�2A + ��A�4A + D�xxA . �1�

The subscript x denotes partial derivative with respect to x,
A�x , t�=r�x , t�ei��x,t� is a complex field, and the parameters
�=�r+ i�i, �=�r+ i�i, and D=Dr+ iDi are, in general, com-
plex. The signs of the parameters �r�0 and �r�0 are cho-
sen in order to guarantee that the bifurcation is subcritical
and saturates to quintic order. The control parameter � is
considered real. Equation �1� admits a class of homogeneous
time-periodic solutions

A1,2 = r1,2ei���ir1,2
2 +�ir1,2

4 �t+�0�, �2�

where r1,2
2 =�r±��r

2+4��r�� /2��r� and �0 is an arbitrary
phase. The existence of A1,2 requires that ��−��r

2 /4��r��.
However inside this range only A1 is stable against small
perturbations. It is easy to see that A0=0 is also a solution of
Eq. �1� but it is stable only for ��0. Therefore the stable
solutions A0 and A1 coexist for −��r

2 /4��r�����0. Inside
this coexistence range is where we are looking for localized
solutions.

A. Static pulses

We look for localized solutions of Eq. �1� making the
Ansatz �18�

A = R0�x�exp�i�	t + 
0�x��� , �3�

where 	 is the oscillation frequency of the pulse which is an
unknown parameter to be determined. Replacing �3� in �1�
and after an algebra we obtain the following equations for
R0�x� and 
0x:

0 = �+R0 + �+R0
3 + �+R0

5 + R0xx − R0
0x
2 , �4�

�−R0 = �−R0
3 + �−R0

5 + 2R0x
0x + R0
0xx, �5�

where

�+ =
Dr� − Di	

�D�2
; �+ =

Dr�r + Di�i

�D�2
;

�+ =
Dr�r + Di�i

�D�2
; �− =

Di� + Dr	

�D�2
;

�− =
Dr�i − Di�r

�D�2
;

�− =
Dr�i − Di�r

�D�2
, �D�2 = Dr

2 + Di
2.

In order to solve approximately �4� and �5� we use the fol-
lowing strategy: we consider that 
0x �the wave vector� is
constant �+p for the left side and −p for the right side� in
almost all the domain �outside the core� except in a narrow
domain around the center of the pulse �core�, where 
0x is
considered to be a straight line �see Fig. 1�b��.

Inside the core we approximate the functions R0�x� and

0x by their first terms in a Taylor expansion writing

R0�x� = Rm − �x2, 
0x = − �x , �6�

where �Rm ,� ,�� are unknown quantities. Replacing �6� in �4�
and �5� we obtain � and � in terms of �	 ,Rm� and the pa-
rameters of �1�: �= 1

2 ��+Rm+�+Rm
3 +�+Rm

5 �, �=�−Rm
2 +�−Rm

4

−�−.

FIG. 1. Analytical approximation for the pulse. The space is
divided in two regions: outside the core �drawn as a continuous
line�, where the wave vector is constant, and core �drawn as a
dashed line�, where the wave vector is a straight line. �a� Modulus
of the pulse. �b� Wave vector.
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Outside the core where the wave vector 
0x is constant
�+p for x�xc and −p for x�−xc� we can integrate explicitly
Eq. �4�. The result is

R0�x� =
2b1/4 exp��− �+ + p2��x� + x0��

�	exp�2�− �+ + p2��x� + x0�� +
a
�b

2

− 4

, �7�

where a=−3�+ /2�+, b=−3�−�++ p2� /�+, and x0 is a con-
stant to be determined, which is a consequence of the trans-
lation symmetry of the CGLE.

Notice that this expression for R0�x� captures the shape of
the pulse in almost all the domain except in the core where
the modulus of the pulse has been approximated by a pa-
rabola with a maximum Rm. Since 	 is a constant, asymp-
totically for �x�→ Eqs. �4� and �5� give

	 =
1

Dr
2 �− Di��Dr − 2p2�D�2� + 2p�D�2�− �Dr + p2�D�2� .

�8�

The continuity of R0�x� at x=xc=−p /� yields the value of
x0 in terms of Rm and p :x0=xc+ �ln uc /�−�++ p2�, where
uc

2=−�a /�b�+2�b /rc
2+2/rc

2�rc
4−arc

2+b and rc=Rm−�xc
2.

The continuity of the first derivative of R0�x� at x=xc

gives us the first relation between Rm and p:

f�p,Rm� ��−
�+

3
rc

�rc
4 − arc

2 + b + 2�xc = 0. �9�

A second relation between Rm and p �a consistency con-
dition� is obtained multiplying Eq. �5� by R0�x� and integrat-
ing on the real axis. Since R0�x� is a symmetric function, the
result can be written as

g�p,Rm� � �− − �−

�
−

0

R0
4 dx

�
−

0

R0
2 dx

− �−

�
−

0

R0
6 dx

�
−

0

R0
2 dx

= 0. �10�

The above integrals can be explicitly evaluated. Thus we
have constructed approximate expressions for R0�x� and 
0x

in all the domain in terms of two unknown parameters,
namely, Rm and p. The existence of static pulses is related to
the intersection between the curves f�p ,Rm�=0 and
g�p ,Rm�=0.

For parameters selected from optical transmission systems
�35�, we show in Fig. 2 the generic mechanism of appearance
and attenuation of the pulses: there exists a critical value �c
so that for ���c the curves f�p ,Rm�=0 �continuous line�
and g�p ,Rm�=0 �dashed line� do not intersect at any point
suggesting there are no pulses. For ���c the curves inter-
sect in two points giving rise to a stable and an unstable
pulse via a saddle-node bifurcation. For these parameters at
�=0 the amplitude of the unstable pulse goes to zero. Thus
we conclude that for this set of parameters pairs of stable and
unstable pulses exist for �c���0. The authors in Ref. �35�

FIG. 2. Saddle-node bifurcation. Values of the parameters are
�r=0.5; �i=1; �r=−0.34; �i=0; Dr=0.3; Di=0.5. �a�
�=−0.102 985��c. �b� �=�c=−0.102 983. �c� �=−0.102 98
��c. The intersection between the curves f�p ,Rm�=0 �continuous
line� and g�p ,Rm�=0 �dashed line� predicts one unstable pulse
�solid circle� and one stable pulse �open circle�.
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report a numerical value of �c near to −0.09 which is in
agreement with our approximate analytical value �c=
−0.102.

The most general situation is shown in Fig. 3: there exists
a critical value �c1 so that for ���c1 the curves f�p ,Rm�
=0 and g�p ,Rm�=0 do not intersect at any point. For �
��c1 the curves intersect in two points leading to a stable
and an unstable pulse via a saddle-node bifurcation. A
saddle-node bifurcation �normally� gives rise to a stable and
an unstable solution. In our case it has been confirmed with
the software AUTO 2000 �36�. By further increasing � we find
another critical value �c2 so that for ���c2 there still exists
an intersection between the curves f =g=0 predicting an un-
stable pulse, but the stable pulse disappears because there is
no intersection between the curves Re f =Im f =0 and Re g
=Im g=0. This second bifurcation is associated with the ap-
pearance of fronts.

In Fig. 3 we computed 	 as a function of � using the
expression given by �8� �thick continuous line stands for
stable pulses and thick dashed line stands for unstable
pulses� and we compare with the curve obtained using the
bifurcation software AUTO 2000 �36� �thin continuous line�.
For values of the parameters �r=1.0, �i=0.2, �r=−1.0, �i
=0.15, Dr=1.0, and Di=−0.1 AUTO 2000 shows that near �
=−0.168 and �=−0.11 the system undergoes a saddle-node
bifurcation �see also Refs. �23,24��. Both critical values of �
are in very good agreement with the theoretical predicted
values for �c1=−0.167 76 and �c2=−0.1195. Moreover, both
curves show that the branch corresponding to the unstable
pulses persists up to �=0.

To compare the shape of the analytical pulses with those
obtained by direct numerical simulations we fix �=−0.13
and the other parameters as in Fig. 3. Owing to the fact that
the curves f�p ,Rm�=0 and g�p ,Rm�=0 cut at two points,
namely, p=0.080 72; Rm=0.537 686 and p=0.262 542; Rm
=0.909 28, we predict two pulses. In Fig. 4�a� we show the
shapes of the pulses obtained with our analytical approach.
The continuous line corresponds to the stable pulse and the
dashed line to the unstable one. The stable pulse obtained

from the direct numerical simulation is drawn with a punc-
tured line. The values of Rm and the asymptotical value of
the wave vector agree within 1% with our analytical ap-
proach. In Fig. 4�b� we show the wave vector for the three
above-mentioned cases.

The approximation scheme presented here remains valid
through the whole intermediate range of parameters between
the variational and the conservative limits. We remark by the
fact that our approximate solutions are not fully analytic �ul-
timately, equations for Rm and p have to be numerically
solved�.

B. Oscillating-modulus pulses

Depending on the parameters, it may happen that before
expanding, the fixed-modulus pulse looses its stability
against an oscillating-modulus pulse. By further increasing
the bifurcation parameter � this periodic breathing motion
becomes quasiperiodic, or chaotic �31�.

To study this situation we proceed to consider perturba-
tions of the basic state �fixed-modulus pulse� of the form r
=R0�x�+��x , t� ;�=	t+
0�x�+��x , t�. Substituting these ex-
pressions into Eq. �1�, linearizing in ��x , t� and ��x , t�, we
obtain

�t = �� + 3�rR0
2 + 5�rR0

4 − Dr
0x
2 − Di
0xx�� − 2Di
0x�x

+ Dr�xx − 2�DrR0
0x + DiR0x��x − DiR0�xx,

FIG. 3. Bifurcation diagram for pulses. Values of the parameters
are �r=1.0; �i=0.2; �r=−1.0; �i=0.15; Dr=1.0; Di=−0.1. The the-
oretical bifurcation curve is drawn as a thick line �continuous line
stands for stable pulses and dashed line stands for unstable pulses�.
The bifurcation curve computed with software AUTO 2000 is drawn
as a thin continuous line.

FIG. 4. �a� Shape of the stable and unstable pulses predicted by
the analytical approach �continuous and dashed lines�. The numeri-
cal result for the stable pulse is represented by a punctured line. �b�
The wave vector. Values of the parameters are: �=−0.13; �r=1.0;
�i=0.2; �r=−1.0; �i=0.15; Dr=1.0; Di=−0.1.
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R0�t = �− 	 + 3�iR0
2 + 5�iR0

4 + Dr
0xx − Di
0x
2 �� + 2Dr
0x�x

+ Di�xx + 2�DrR0x − DiR0
0x��x + DrR0�xx. �11�

Asymptotically, i.e, x→; 
0x=−p; R0→0 and R0x /R0=
−�−�++ p2, the system �11� reduces to the following linear
system:

�t = ��1 + 2Dip�x + Dr�x
2�� + ��2 − Di�x�y ,

yt = ��1 + �2�x + �3�x
2 + Di�x

3�� + ��4 + 2Dip�x + Dr�x
2�y ,

�12�

where we have used the following
definitions y�R0�x; �1=�−Drp

2; �2=Di
�−�++ p2+2Drp;

�1=−�−�++ p2�	+Dip
2�; �2=−�2Drp�−�++ p2+	+Dip

2�;
�3=Di

�−�++ p2−2Drp; �4=2Dip�−�++ p2−Dr�−�++ p2�.
Assuming that the functions � and y are of the form � �

y
�

=k�
�k

yk
�eikx+�kt system �12� leads to a matrix equation. The

condition that a solution exists results in the following equa-
tion for �k:

��1 − Drk
2 + 2iDipk − �k���4 + 2iDipk − Drk

2 − �k�

− ��2 − iDik���1 + i�2k − �3k2 − iDik
3� = 0. �13�

Let �=Re �k; then from the above equation we get a re-
lation between � and the wave number k:

b1 − b2� +
a2�a1 − a2��

�a3 − 2��
+ �2 −

�a1 − a2��2

�a3 − 2��2 = 0, �14�

where a1= �2Dip�1−�2�2+Di�1+2Dip�4�k+ ��2−4Drp
−�3�Dik

3; a2=4Dipk; a3=�1−2Drk
2; b1=�1�4−�2�1

+ ��2�3−Dr��1+�4�−Di�2−4Di
2p2�k2+ �D�2k4; b2=�1

−2Drk
2+�4.

Thus by increasing the bifurcation parameter �, for fixed
parameters �, �, and D, it might be possible that above a
critical value �=�0, � becomes positive for some range of k.
Because of the asymptotic linear analysis the existence of �0
is an indication that for ���0, in the range where one has
coexistence of homogeneous attractors, the fixed-modulus
pulses are going to loose their stability against oscillating-
modulus pulses.

To verify this analytical prediction in a concrete case we
fix the parameters of �1�: �r=1.0, �i=0.2, �r=−1.0, �i
=0.15, Dr=1.0 and Di=−0.1. According to �23,24� there is a
range of the bifurcation parameter � where there exist only
stationary pulses with fixed shape. The lower and upper lim-
its of this region have been studied in the previous section
�see Fig. 3�. Now we proceed to examine ��k� inside this
range. The result is that ��k� is negative for all wave number
k in the range �c1����c2. Therefore our prediction is that
there are no oscillating-modulus pulses, which is consistent
with numerical observations. Now we choose a different set
of parameters: �r=3.0, �i=1.0, �r=−2.75, �i=1.0, Dr=0.9,
and Di=−1.1. Plotting ��k� we see in Fig. 5 that it vanishes
at k=0.535 predicting that the basic state will loose stability
for ���0=−0.295. For ���0 the function ��k� is negative
for all k. Numerical simulations of Eq. �1� show that for
these parameters the fixed-modulus pulse loses its stability

against an oscillating-modulus pulse for �0=−0.20, which is
consistent with the theoretical prediction. In Fig. 6 we show
numerical space-time plots for the shape of the pulse in the
static and oscillating regimes. Our analytical result is also
consistent with numerical observations made in �31�, where
for the same parameters as before but for �=−0.1 and vary-
ing the dissipation Dr the authors found periodic, quasiperi-
odic, and chaotic localized solutions. In particular, for Dr
=0.9 and �=−0.1, which is greater than our critical value
�0=−0.295, the authors found a localized solution whose
modulus breathes in a periodic fashion with time.

III. THE QUINTIC CGLE WITH NONLINEAR GRADIENT
TERMS: MOVING PULSES

As it was mentioned in the Introduction the quintic CGLE
including nonlinear gradient terms is a more general model

FIG. 5. Values of the parameters are �r=3.0, �i=1.0, �r=
−2.75, �i=1.0, Dr=0.9, and Di=−1.1. ��k�=Re �k vanishes at k
=0.535 for �=�0=−0.295. For ���0 the function ��k� is negative
for all k.

FIG. 6. �Color online� Space-time plots for the modulus of the
pulse. Values of the parameters are �r=3.0, �i=1.0, �r=−2.75, �i

=1.0, Dr=0.9, and Di=−1.1. �a� For �=−0.21 the shape of the
pulse is static. �b� For �=−0.19 the shape of the pulse is oscillating.
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with application in propagation of ultrashort pulses in optical
fibers �35�:

�tA = �A + ��A�2A + ��A�4A + D�xxA + ��x��A�2A�

+ �A�x��A�2� . �15�

The parameters �, �, D, �, and � are, in general, com-
plex. The parameters � and � break the parity symmetry x
→−x leading to moving pulses.

We stress the fact that the parameters � and � are not
related to the existence of the pulses but are responsible for
the velocity and asymmetry of the moving localized struc-
tures.

In this section we shall consider �, �, and � real, �=�r
+ i�i, D=1, and �=0.

Making the change of variables: y=x−vt; �= t, where v is
the velocity of the pulse, we assume that in the moving
frame we can do the following Ansatz: r=R�y�; �=	�
+
�y�. Then Eq. �15� reduces to

− �v + 3�R2�Ry = �R + �rR
3 + �R5 + Ryy − R
y

2, �16�

− �v + �R2�R
y = − 	R + �iR
3 + 2Ry
y + R
yy . �17�

As in the previous sections, the strategy to calculate ap-
proximately R�y�, 
y�y�, 	, and v consists in considering that

y�y� �the wave vector� is constant �+p1 for y�y1, −p2 for
y�y2� in almost all the domain �outside the core� except in a
narrow domain around the center of the pulse �core�, where

y�y� is considered to be a straight line �see Fig. 7�b��.

Because of parity breaking the left and right sides of the
pulse must be studied separately.

Outside the core and for the left side �y�y1�, Eqs. �16�
and �17� lead to

0 = ���1� − p1
2�R + ��1�R3 + ��1�R5 + Ryy , �18�

where

��1� = � −
v2

2
+

v
2
�v2 + 4�p1

2 − �� ,

��1� = �r − 2�v −
v�i

2p1
+

3

2
��v2 + 4�p1

2 − �� ,

��1� = � −
3

2
�2 −

3��i

2p1
. �19�

Asymptotically, for y→− we obtain 	
= p1�v2+4�p1

2−��, which is a constant in �− ,0�.
For the right side �y�y2� one finds the same equation

�18� with coefficients

��1� = � −
v2

2
−

v
2
�v2 + 4�p2

2 − �� ,

��1� = �r − 2�v +
v�i

2p2
−

3

2
��v2 + 4�p2

2 − �� ,

��1� = � −
3

2
�2 +

3��i

2p2
. �20�

For y→ + we get 	= p2�v2+4�p2
2−��, which is a con-

stant in �0, +�.
Integrating Eq. �18� it is possible to obtain an explicit

expression for R�y�:

R�y� =
2b1/4 exp��− ��1� + p2��y� + y0��

�	exp�2�− ��1� + p2��y� + y0�� +
a
�b

2

− 4

,

�21�

where a= �−3��1�� /2��1�, b=−3�−��1�+ p2� /��1�, y0 is a con-
stant to be determined, p= p1 for y�y1, and p=−p2 for y
�y2.

Inside the core and for the left side �y1�y�0� we assume
that R�y�=Rm

�left�−�y2−�y3 and 
y =−�y, where Rm
�left� is the

highest value of the pulse constructed on the left side. From
Eqs. �16� and �17� we can calculate the values of �, �, and �:

� =
1

2
��Rm

�left� + �r�Rm
�left��3 + �r�Rm

�left��5� ,

� = −
�

3
�v + 3��Rm

�left��2� ,

� = �i�Rm
�left��2 − 	 . �22�

FIG. 7. Analytical approximation for the pulse in the moving
frame. For the left �y�0� and right sides �y�0� the space is di-
vided in two regions: outside the core, where the wave vector is
constant, and core, where the wave vector is a straight line. �a�
Modulus of the pulse. �b� Wave vector.
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Imposing continuity of the amplitude R�y�, the phase gra-
dient 
y�y�, and the derivative of the amplitude of the ana-
lytical expressions calculated inside and outside the core of
the pulse at y=y1=−p1 /� we determine y0 and a relation
between Rm

�left� and p1:

f1�Rm
�left�,p1� ��−

��1�

3
rc

�rc
4 − arc

2 + b + 2�y1 + 3�y1
2 = 0,

�23�

where rc=Rm
�left�−�y1

2−�y1
3.

In order to obtain a second relation between Rm
�left� and p1

we use a consistency relation by multiplying Eq. �17� by
R�y� and integrating from − to 0.

g1�Rm
�left�,p1� � 	 −

1

�I2
�0� + I2

�1��
��i�I4

�0� + I4
�1�� + v�p1I2

�0� + I2
�2��

+ ��p1I4
�0� + I4

�2��� = 0, �24�

where I2
�0���−

y1 R2 dy, I4
�0���−

y1 R4 dy, I2
�1���y1

0 R2 dy, I4
�1�

��y1

0 R4 dy, I2
�2���y1

0 R2
y dy, and I4
�2���y1

0 R4
y dy, which
can be calculated explicitly.

For the right side �y�0� we proceed in an analogous way
obtaining a relation between Rm

�right� and p2:

f2�Rm
�right�,p2� ��−

��1�

3
rc

�rc
4 − arc

2 + b − 2�y2 − 3�y2
2 = 0,

�25�

where rc=Rm
�right�−�y2

2−�y2
3, and a consistency relation given

by

g2�Rm
�right�,p2� � 	 −

1

�I2
�0� + I2

�1��
��i�I4

�0� + I4
�1�� − v�p2I2

�0� − I2
�2��

− ��p2I4
�0� − I4

�2��� = 0, �26�

where I2
�0���y2

+R2 dy, I4
�0���y2

+R4 dy, I2
�1���0

y2R2 dy, I4
�1�

��0
y2R4 dy, I2

�2���0
y2R2
y dy, and I4

�2���0
y2R4
y dy, which

can be calculated explicitly.
Thus for fixed values of Eq. �15� and v, expressions

�23�–�26� give us Rm
�left�, Rm

�right�, p1, and p2, which enable us
to determine the left and right parts of the localized structure.
Finally, the continuity of the pulse at y=0 or the condition

Rm
�left��v� = Rm

�right��v� �27�

leads to two values of v �velocity of the pulse�, namely, v
=vu, the velocity of the unstable pulse, and v=vs, the veloc-
ity of the stable pulse.

To verify this analytical prediction in a concrete case we
fix the parameters of Eq. �15�: �=−0.5, �r=3.0, �i=1.0, �
=−2.75, and �=−0.1.

Figures 8�a� and 8�b� show that for v=vu=0.056 75 rela-
tion �27� is satisfied and Rm

�left��vu�=Rm
�rright��vu�=0.647 96. In

addition p1=0.189 99 and p2=0.187 52. Thus the unstable
pulse is completely determined.

Figures 9�a� and 9�b� show that for v=vs=0.090 61 rela-
tion �27� is satisfied and Rm

�left��vs�=Rm
�right��vs�=0.885 26. In

addition p1=0.351 86 and p2=0.345 81. Thus the stable
pulse is completely determined.

Moreover we can study the relation between vs and �. We
find analytically and from direct numerical simulations that
vs varies linearly with �. For ����0.1 our method collapses
for the parameters used in this example. The reason may be
the fact that for large v the renormalized parameters ��1�,
��1�, and ��1� lead to a pulse outside the analytical stability
tongue. This is an indication that for large ��� the pulse ex-
pands �transition to fronts�. We have observed this behavior
numerically.

In Fig. 10�a� we show the shapes of the pulses obtained
with the analytical approach. The continuous line represents

FIG. 8. Parameters of Eq. �15� are �=−0.5, �r=3.0, �i=1.0,
�=−2.75, and �=−0.1. �a� The intersection �solid circle� between
the curves f1�Rm

�left� , p1�=0 �continuous line� and g1�Rm
�left� , p1�=0

�dashed line� predicts the left side of the unstable pulse. �b� The
intersection �solid circle� between the curves f2�Rm

�right� , p2�=0 �con-
tinuous line� and g2�Rm

�right� , p2�=0 �dashed line� predicts the right
side of the unstable pulse. For v=vu=0.05675 relation Rm

�left��vu�
=Rm

�right��vu�=0.64796 is satisfied. In addition p1=0.189 99 and p2

=0.187 52.
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the stable pulse and the dashed line the unstable one. The
stable pulse obtained from a direct numerical simulation is
drawn with a punctured line. In Fig. 10�b� we show the wave
vector for the three above-mentioned cases. Figure 10�c�
shows a numerical space-time plot for the modulus of the
stable moving pulse, which leads to a numerical velocity of
the pulse v=0.084 21. The analytical values of Rm, v, and the
asymptotical values of the wave vector for the stable moving
pulse agree with direct numerical simulations within 4%,
8%, and 10% respectively.

IV. HOLES IN THE QUINTIC CGLE

Another large class of localized solutions are hole solu-
tions. They have already been shown to exist for the cubic

CGLE �37,38�, but are known to be unstable against small
changes in the equations �structural instability� �39�.

The quintic CGLE �1� admits stable stationary hole solu-
tions with most parameters being real �40�. In this section we
consider �, �, and D real, �=�r+ i�i.

Carrying out the following Ansatz: r=R�x�; �=	t+
�x�,
Eq. �1� reduces to

0 = �R + �rR
3 + �R5 + D�Rxx − R
x

2� , �28�

FIG. 9. Parameters of Eq. �15� are �=−0.5, �r=3.0, �i=1.0,
�=−2.75, and �=−0.1. �a� The intersection �open circle� between
the curves f1�Rm

�left� , p1�=0 �continuous line� and g1�Rm
�left� , p1�=0

�dashed line� predicts the left side of the stable pulse. �b� The in-
tersection �open circle� between the curves f2�Rm

�right� , p2�=0 �con-
tinuous line� and g2�Rm

�right� , p2�=0 �dashed line� predicts the right
side of the stable pulse. For v=vs=0.090 61 relation Rm

�left��vs�
=Rm

�right��vs�=0.885 26 is satisfied. In addition p1=0.351 86 and p2

=0.345 81.

FIG. 10. Parameters of Eq. �15� are �=−0.5, �r=3.0, �i=1.0,
�=−2.75, and �=−0.1. �a� Shape of the stable and unstable pulses
predicted by the analytical approach �continuous and dashed lines�.
The numerical result for the stable pulse is represented by punc-
tured line. vs and vu are the velocities of the stable and unstable
pulses, respectively. �b� The wave vector. �c� Numerical space-time
plot for the shape of the stable moving pulse.
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R	 = �iR
3 + D�R
xx + 2Rx
x� . �29�

The strategy to approximately calculate R�x�, 
�x�, and 	
consists in considering that 
x�x� �the wave vector� is con-
stant �−p for the left side, +p for the right side� in almost all
the domain �outside the core� except in a narrow domain
around the center of the hole �core�, where 
x�x� is consid-
ered to be a cubic function �see Fig. 11�.

Outside the core ��x��x*�, Eqs. �28� and �29� lead to

0 = �� − Dp2�R + �rR
3 + �R5 + DRxx, �30�

R	 = �iR
3 ± 2DpRx. �31�

Asymptotically, for x→, from the above equations we
obtain R0, the asymptotic value of the modulus of the sta-
tionary hole, and its frequency 	:

R0 =�− �r − ��r
2 − 4��� − Dp2�

2�
,

	 = −
�i

2�
��r + ��r

2 − 4��� − Dp2�� .

By integrating Eq. �31� it is possible to obtain an explicit
expression for R�x�:

R�x� =
R0

�1 + exp�−
	

Dp
��x� − x0�� , �32�

where x0 is a constant to be determined, which is related to
the translational symmetry of Eq. �31�.

Inside the core ��x��x*� we assume that R�x�=Rm+�x2

+�x4 and 
x=�x−�x3, where Rm is the height of the hole at
x=0. Then x*=�� /3�.

From Eqs. �28� and �29� we can calculate the values of �,
�, �, and � in terms of Rm, 	, and the parameters of Eq. �1�.

Imposing continuity of the amplitude R�x� at x=x* we
obtain x0=x*+Dp /	 ln�R0

2 /rc
2−1�, where rc=R�x*�. The con-

tinuity of the first derivative of the amplitude R�x� leads to a
first relation between Rm and p:

f�p,Rm� �
rc	�R0

2 − rc
2�

2Dp R0
2 − 2�x* − 4�x*

3 = 0. �33�

In order to obtain a second relation between Rm and p we
use a consistency relation by multiplying Eq. �29� by R�x�
and integrating from 0 to . Taking into account that expres-
sion �32� represents an exact solution of Eq. �29� the above
consistency relation reduces to

g�p,Rm� � 	�
0

x*

R2 dx − �i�
0

x*

R4 dx − Dp rc
2 = 0. �34�

Thus we have constructed approximate expressions for
R�x� and 
x�x� in all the domain in terms of two unknown
parameters, namely, Rm and p. The existence of stationary
holes is related to the intersection between the curves
f�p ,Rm�=0 and g�p ,Rm�=0.

For Eq. �1�, and for fixed parameters �, �r, �, and D we
found the following scenario: there exists a critical value �ic1
so that for �i��ic1 the curves f�p ,Rm�=0 and g�p ,Rm�=0
do not intersect at any point suggesting there are no holes.
For �i��ic1 the curves intersect in two points leading to a
stable and an unstable hole via a saddle-node bifurcation. By
further increasing �i we find another critical value �ic2 so
that for �i��ic2 there still exist an intersection between the
curves f =g=0 predicting an unstable hole, but the stable
hole disappears.

For fixed parameters of Eq. �1�: �=−0.06; �r=1.125; �r
=−0.859375; and D=1, the above analytical scenario pre-
dicts stable holes in the range �i� �0.43,0.50�. A numerical
simulation of Eq. �1� with periodic boundary conditions
leads to stable stationary holes in the range �i
� �0.456,0.503�, which is in good agreement with our theo-
retical prediction.

V. CONCLUSIONS AND PERSPECTIVE

In this paper we have studied analytically the appearance
of static and oscillating modulus in the quintic CGLE with-
out nonlinear gradient terms, and moving pulses in the quin-
tic CGLE including nonlinear gradient terms. We focused on
this equation since it represents a prototype envelope equa-
tion associated with the onset of an oscillatory instability

FIG. 11. Analytical approximation for the stationary hole. The
space is divided in two regions: outside the core, where the wave
vector is constant, and core, where the wave vector is a cubic func-
tion. The value x=x* corresponds to the local maximum of the
cubic function. �a� Modulus of the pulse. �b� Wave vector.
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near a weakly inverted bifurcation. The used analytical
method, valid through the whole intermediate range of pa-
rameters between the variational and conservative limits,
consists of calculating the localized structure inside and out-
side the core and then to match the approximate solutions in
the border of the regions, imposing there continuity of the
amplitude, the phase, and the derivative of the amplitude.
The principal results concerning the quintic CGLE without
nonlinear gradients are the appearance of pulses with fixed
shape is related to a saddle-node bifurcation, and a linear
analysis gives an indication for the existence of pulses with
oscillating modulus. For the quintic CGLE including nonlin-
ear gradient terms, the method enables us to calculate the
velocities of the stable and unstable moving pulses. In all
cases the results obtained using the analytic approximation
scheme are in good agreement with direct numerical simula-

tions. Finally, we have briefly showed the usefulness of this
method in predicting the range of existence of other classes
of localized solutions in the quintic CGLE, namely, stable
holes. We conjecture that this successful method for the
quintic CGLE could be useful in studying systematically lo-
calized structures resulting from other mechanisms different
from the coexistence between a limit cycle and a fixed point.

ACKNOWLEDGMENTS

O.D. wishes to acknowledge the support of FAI �Project
No. ICIV-001-04, Universidad de los Andes�, FONDECYT
�Project Nos. 1050660 and 1020374�, and Project No.
ACT15 �Anillo en Ciencia y Tecnología�. The author are
grateful to Dr. Pablo Zegers for a critical reading of this
manuscript.

�1� P. Kolodner, D. Bensimon, and C. M. Surko, Phys. Rev. Lett.
60, 1723 �1988�.

�2� Y. A. Astrov and Y. A. Logvin, Phys. Rev. Lett. 79, 2983
�1997�.

�3� B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, Phys.
Rev. Lett. 85, 748 �2000�.

�4� P. Umbanhowar, F. Melo, and H. L. Swinney, Nature �London�
382, 793 �1996�.

�5� H. H. Rotermund, S. Jakubith, A. von Oertzen, and G. Ertl,
Phys. Rev. Lett. 66, 3083 �1991�.

�6� K. J. Lee, W. D. McCormick, Q. Ouyang, and H. L. Swinney,
Nature �London� 369, 215 �1994�.

�7� P. Coullet, C. Riera, and C. Tresser, Phys. Rev. Lett. 84, 3069
�2000�.

�8� J. E. Pearson, Science 261, 189 �1993�.
�9� Y. Hayase and T. Ohta, Phys. Rev. Lett. 81, 1726 �1998�.

�10� K. Krischer and A. Mikhailov, Phys. Rev. Lett. 73, 3165
�1994�.

�11� C. P. Schenk, M. Or-Guil, M. Bode, and H.-G. Purwins, Phys.
Rev. Lett. 78, 3781 �1997�.

�12� J. Kosek and M. Marek, Phys. Rev. Lett. 74, 2134 �1995�.
�13� S. Koga and Y. Kuramoto, Prog. Theor. Phys. 63, 106 �1980�.
�14� T. Ohta, Y. Hayase, and R. Kobayashi, Phys. Rev. E 54, 6074

�1996�.
�15� Y. Hayase, O. Descalzi, and H. R. Brand, Phys. Rev. E 69,

065201�R� �2004�.
�16� M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851

�1993�.
�17� H. Sakaguchi and H. R. Brand, Physica D 117, 95 �1998�.
�18� O. Thual and S. Fauve, J. Phys. �France� 49, 1829 �1988�.
�19� B. A. Malomed, Physica D 29, 155 �1987�.
�20� S. Fauve and O. Thual, Phys. Rev. Lett. 64, 282 �1990�.
�21� V. Hakim and Y. Pomeau, Eur. J. Mech. B/Fluids 10, 137

�1991�.

�22� B. A. Malomed and A. A. Nepomnyashchy, Phys. Rev. A 42,
6009 �1990�.

�23� W. van Saarloos and P. C. Hohenberg, Phys. Rev. Lett. 64, 749
�1990�.

�24� W. van Saarloos and P. C. Hohenberg, Physica D 56, 303
�1992�.

�25� P. Marcq, H. Chaté, and R. Conte, Physica D 73, 3035 �1994�.
�26� N. Akhmediev and V. V. Afanasjev, Phys. Rev. Lett. 75, 2320

�1995�.
�27� N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo,

Phys. Rev. E 53, 1190 �1996�.
�28� V. V. Afanasjev, N. Akhmediev, and J. M. Soto-Crespo, Phys.

Rev. E 53, 1931 �1996�.
�29� J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S.

Wabnitz, Phys. Rev. E 55, 4783 �1997�.
�30� N. Akhmediev, J. M. Soto-Crespo, and G. Town, Phys. Rev. E

63, 056602 �2001�.
�31� R. J. Deissler and H. R. Brand, Phys. Rev. Lett. 72, 478

�1994�.
�32� R. J. Deissler and H. R. Brand, Phys. Rev. Lett. 81, 3856

�1998�.
�33� O. Descalzi, M. Argentina, and E. Tirapegui, Phys. Rev. E 67,

015601�R� �2003�.
�34� O. Descalzi, Y. Hayase, and H. R. Brand, Phys. Rev. E 69,

026121 �2004�.
�35� H. Tian, Z. Li, J. Tian, and G. Zhou, Phys. Rev. E 66, 066204

�2002�.
�36� E. J. Doedel, H. B. Keller, and J. P. Kernévez, Eur. J. Biochem.

1�4�, 745 �1991�.
�37� K. Nozaki and N. Bekki, J. Phys. Soc. Jpn. 53, 1581 �1984�.
�38� H. Sakaguchi, Prog. Theor. Phys. 85, 417 �1991�.
�39� I. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 �2002�.
�40� H. Sakaguchi, Prog. Theor. Phys. 86, 7 �1991�.

ORAZIO DESCALZI PHYSICAL REVIEW E 72, 046210 �2005�

046210-10


